Low-Frequency Sound Propagation in Lipid Membranes

نویسندگان

  • Lars D. Mosgaard
  • Andrew D. Jackson
  • Thomas Heimburg
چکیده

In the recent years, we have shown that cylindrical biological membranes such as nerve axons under physiological conditions are able to support stable electromechanical pulses called solitons. These pulses sharemany similarities with the nervous impulse, for example, thepropagationvelocityaswell as themeasured reversibleheatproductionandchanges in thickness and length that cannot be explained with traditional nerve models. A necessary condition for solitary pulse propagation is the simultaneous existence of nonlinearity and dispersion, that is, the dependence of the speed of sound on density and frequency. A prerequisite for the nonlinearity is the presence of a chain-melting transition close to physiological temperatures. The transition causes a density dependence of the elastic constants which can easily be determined by an experiment. The frequency dependence is more difficult to determine. The typical timescale of a nerve pulse is 1 ms, corresponding to a characteristic frequency in the range up to 1 kHz. Dispersion in the sub-kilohertz regime is difficult to measure due to the very long wave lengths involved. In this contribution, weaddress theoretically thedispersionof thespeedof sound in lipidmembranesand relate it to experimentally accessible relaxation times by using linear response theory. This ultimately leads to an extension of the differential equation for soliton propagation. Advances in Planar Lipid Bilayers and Liposomes, Volume 16 # 2012 Elsevier Inc. ISSN 1554-4516 All rights reserved. http://dx.doi.org/10.1016/B978-0-12-396534-9.00002-7 51 ABBREVIATIONS DPPC dipalmitoyl phosphatidylcholine DSC differential scanning calorimetry

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DYNAMICAL SIMULATION OF UNDERWATER SOUND PROPAGATION IN THE HORMOZ STRAIT

Providing an illustration of sound propagation in the Hormoz Strait ,this paper is about acoustic wave propagation in shallow water for a harmonic point source with low frequency, less than 1000 and solution of a homogenous Helmholtz equation using parabolic equation. C++ programming is used to solve Helmholtz equation [9] and MATLAB software is used to illustrate figures and animate them [6], ...

متن کامل

Calculation of the drop in sound pressure level and frequency analysis of aerospace engine test cell (Research Article)

Aerospace engines testing is a source of noise pollution and determining the low frequency acoustic characteristics of the test cell, plays an important role in optimally control of the sound field and reducing the level of sound pressure and pollution. In this study, the drop in average sound pressure level is numerically predicted by constructing a test cell according to ISO 140 standard. To ...

متن کامل

Sound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation

This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural directi...

متن کامل

Sound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length

   In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...

متن کامل

Plume outflow intrusion impact on acoustical signal fluctuations in a pre-stratified environment

Existence of outflow intrusion introduces small-scale turbulence that perturbs the vertically stratified character of the sound velocity and causes spatial and temporal fluctuations of the sound propagation. In this experimental study, we have investigated acoustic wave propagation with frequency of 50 kHz in a pre-stratified environment with intrusion of a turbulent plume while the si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012